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Abstract— We present a structured dataset for the research
and development of automated driving systems (ADS) sup-
ported by hyperspectral imaging (HSI). The dataset contains
per-pixel manually annotated images selected from videos
recorded in real driving conditions that have been organized
according to four environment parameters: season, daytime,
road type, and weather conditions. The aim is to provide
high data diversity and facilitate the automatic generation
of data subsets for the evaluation of machine learning (ML)
techniques applied to the research of ADS in different driving
scenarios and environmental conditions. The video sequences
have been captured with a small-size 25-band VNIR (Visible-
NearInfraRed) snapshot hyperspectral camera mounted on
a driving automobile. The current selection of classes for
image annotation is aimed to provide reliable data for the
spectral analysis of the items in the scenes; it is thus based on
material surface reflectance patterns (spectral signatures). It is
foreseen that future versions of the dataset will also incorporate
alternative dense semantic labeling of the annotated images. The
first version of the dataset, named HSI-Drive v1.0, is publicly
available for download3.

I. INTRODUCTION
In the field of autonomous driving and advanced driving

assistance systems (ADS and ADAS), perceiving the sur-
rounding environment and extracting meaningful information
is a key task. The majority of current image-based object
analysis systems for ADS rely on RGB imaging for object
detection and tracking [1]. Although state of the art object
tracking systems have evolved considerably, there still re-
main certain robustness issues related to changing weather
and illumination conditions, as well as to challenging driv-
ing scenarios with rapid changes in target appearance and
multiple occlusions between different objects [1], [2]. In
ADS, robustness of image analysis is critical, since unreliable
systems may produce risky driving situations and possibly
even fatal accidents.

The use of hyperspectral sensors can help to improve
scene understanding and object tracking system robustness,
since they provide richer information about materials than
conventional cameras. This extra information can be used
to better separate objects and backgrounds, improve object
tracking robustness and enhance the performance of image
segmentation algorithms. HSI is already being widely applied
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in some areas such as remote sensing in geoscience and,
more recently, in precision agriculture, medical imaging and
others [3]. However, the use of HSI in application areas
that require autonomy of operation and easy integration in
moving platforms has been limited by traditional scanning
sensor setup requirements and also by restrictions in the
processing power of the accompanying computing hardware.
To-day, with the advent of new small-size snapshot cameras
that can provide hyperspectral images at the video rates [4],
it is possible to setup a HSI system in almost any moving
platform, and particularly in ground vehicles. Consequently,
how to efficiently process hyperspectral information onboard
a moving platform is currently an active research topic.

This new HSI technology has begun to attract the attention
of some ADS researchers due to its application potential and
downward price trends. However, it is still necessary to carry
out a concerted research effort to transfer and adapt this
technology to the development of more efficient ADS. One
of the key resources necessary for the development of HSI-
based algorithms for ADS is undoubtedly the availability of
specific datasets containing video sequences and annotated
images acquired with modern snapshot HSI cameras. Due
to the present shortage of such a resource, the Digital
Electronics Design Group (GDED) of the University of
the Basque Country, currently involved in the research of
the edge processing of HSI with low latency requirements,
has started to develop of an extensive, structured database
of hyperspectral images acquired with a VNIR small-size
snapshot camera. In this paper, we describe the state of
development of this project and the details of the first version
of this dataset, the HSI-Drive v1.0, which is already publicly
available for researchers in the field 3.

II. RELATED WORK
A. Multispectral and hyperspectral imaging in ADS

In order to increase the robustness of ADS systems in
changing environmental conditions, some researchers have
proposed the additional use of images taken outside the
visible spectrum. Since light with longer wavelengths is
scattered to a lesser extent, the information received at
infrared frequencies has different characteristics from that
of the visible ones, and also provides greater range under
various conditions. In the field of computer vision for ADS
several studies have already explored the use of both near
infrared (NIR) [5], [6] and far-infrared (FIR) images [7]-
[10]. The use of the FIR spectrum has been mainly applied
to the detection of pedestrians, since it fundamentally obtains
information on the temperature of objects. Its detractors,



however, allege that these systems turn out to be inefficient in
general, since in summer the temperature differences with the
environment are small, and in winter the use of thick layers
of clothing does not allow such differences to be detected
[5].

A more recent study analyzes the fusion of images in
RGB, NIR, MIR (medium frequency infrared) and FIR for
the detection and classification of objects by mounting a sys-
tem of four cameras on a cart to simulate a driving situation
[11]. The study shows that the combined information from
the four cameras allows better differentiation of the different
types of objects for which the system (YOLO) is trained. In
[12] the authors describe a lighter CNN (Convolutional Neu-
ral Network) architecture for the real-time semantic image
segmentation of street scenes acquired with a combination of
RGB and thermal images. They show that the segmentation
accuracy is increased by adding thermal information and
that the algorithm can produce outputs with low latency for
ADS when processed on high-end GPUs. All the above-
mentioned works generally propose making use of multiple
cameras with different sensitivity spectra to add “visual”
information complementary to that of the visible spectrum.
The applied detection and segmentation algorithms, however,
remain identical or very similar to the techniques applied
to visible imaging, which makes such complex processing
pipelines even heavier to compute.

More recently, some researchers have started to explore
the applicability of HSI cameras to the field of autonomous
driving. The underlying idea is that the incorporation of
richer spectral information can provide a distinct spectral fin-
gerprint for each entity in the image. In addition to increasing
the robustness of the detection systems, this approach could
potentially allow for the application of lighter algorithms
than those used for visible images (more information =
less processing). One of the earliest studies in this regard,
although not specifically directed at ADS, draws interesting
conclusions regarding the ability of images taken with hyper-
spectral cameras to detect people in urban environments [13].
In this work, a hyperspectral camera (225 bands in a 400 to
2500 nm range) is used to determine the capability of the
system by analyzing the spectral separability. Basically the
work concludes that the system is indeed capable of signifi-
cantly improving the discrimination capacity in comparison
with the simple use of the RGB bands, but more interestingly,
it also concludes that the use of the VNIR spectrum (up to
1000 nm) offers similar results to using the full spectrum (up
to 2500nm). This is very relevant to the present proposal
since most current low-cost HSI snapshot cameras do not
offer spectrometric information beyond 1000 nm. An active
research group in the investigation of the use of HSI in ADS
is the Active Vision Group (AGAS) of the University of
Koblenz-Landau. They have published some papers on this
topic reporting interesting results on image segmentation and
terrain classification applied to images combining VIS and
NIR spectrum information from low-cost snapshot cameras
[14]-[16]. Apart from a few very recent foundational works
[17], [20], little has been published on this specific topic.

B. HSI datasets for ADS research

At the time of the launch of this project there was only one
HSI dataset specifically designed for ADS development: the
Hyko dataset created by the above mentioned AGAS group.
In the meantime, as far as we are aware, two more datasets
have been reported.

Hyko1: In 2017 Winkens et al. [18] presented Hyko, an
annotated HSI dataset collected with both XIMEA VIS (470
to 630 nm) and NIR (600 to 975 nm) snapshot cameras
mounted on a moving car. Hyko1 contains 233, 25-band
NIR images and 280, 15-band VIS images for terrain clas-
sification. Annotation masks were generated by per-pixel
labeling with five classes: “undefined”, “drivable”, “rough”,
“obstacle” and “sky”.

Hyko2: Contains 78, 25-band NIR images and corre-
sponding annotated masks with semantic classes for urban
scenes (11 classes) and masks with spectral reflectance labels
(9 classes). It also contains 163 15-band VIS images and
corresponding annotated masks with dense drivability labels
(5 classes) and masks with spectral reflectance labels.

Hyperspectral City v1.0: In 2019 You et al. [19] pre-
sented Hyperspectral City, a dataset and benchmark for
urban autonomous driving scenes. Images were captured with
a LightGene camera sensor, which provides 129 spectral
channels in the 450 to 950 nm range. This high spatial and
spectral resolution sensor produces cubes larger than 1GB.
All images were taken over three days in June in varied urban
settings and lighting conditions. Car driving speed was in
the range of 20-50 Km/h with the camera working at 1 fps.
The dataset contains a 367-image training dataset and a 58-
image testing dataset, but only 300 images have been labeled.
Annotation is focused on semantic segmentation with 10
classes, using coarse labeling for the training set and fine
labeling for the testing set.

HSI Road: In 2020 Lu et al. [20] presented HSI road, a
HIS dataset for road segmentation. It comprises images taken
both in urban and rural scenes. It contains 3,799 scenes with
RGB and NIR bands as well as their respective annotation
masks. NIR images were captured with a 15-band Ximea
camera (ranging from 680 to 960 nm). Image annotation has
been created manually by polygon labeling tools. Only two
classes are available: ”background” and ”road”.

III. THE HSI-DRIVE DATASET

A. System Setup

The recording system setup for this project was ex-
tremely simple, consisting of just one Photonfocus MV1-
D2048x1088-HS02-96-G2 camera that incorporates an Imec
25-band VNIR sensor. As depicted in Fig. 1, the camera
was mounted on a sucker holder on the front hood of the
vehicle and connected to a laptop inside the car through an
Ethernet cable. The Photonfocus MV1 camera is a small-
size snapshot camera with a GigEVision interface that can
run at up to 42fps depending on its configuration. The Imec
sensor is a 25-band VIS-NIR (600nm-975nm) multispectral
sensor based on a CMOSIS CMV200 image wafer sensor



Fig. 1: The Photonfocus camera mounted on the front hood
of the vehicle (top) and the recording laptop inside the car
(bottom).

with 5µmx5µm pixel size and 2048x1088 resolution. The
spectral bands are obtained by a mosaic of Fabri-Perot filters
that produce 2D images with 5x5 pixel windows.

The selected optics was an Edmund Optics 16mm C
Series VIS-NIR fixed focal length lens. Since the sensor
dimension is 11.2 mm x 5.8 mm (2/3” format), this lens
gives us a 30.9º FOV. To maximize depth of field and
avoid excessive vignetting we have set the aperture to f/8.
Since the Photonfocus camera does not adjust the exposure
time automatically, recordings have been done by setting
two different exposure times depending on light conditions:
10ms for bright light conditions and 20ms for dull days
and early morning/sunset recordings. No longer exposure
times have been used due to the appearance of phantom
effects in fast-moving objects. A 12bit resolution has been
used for raw binary information coding, while the camera
throughput has been limited to 11fps to avoid excessive
memory consumption.

B. Raw Image Processing

HSI snapshot mosaic cameras produce 2D gray-level
images that must be transformed into hyperspectral cubes
through a sequence of image preprocessing stages. The ap-
plied preprocessing pipeline comprises raw image cropping,
reflectance calculation, band extraction, spatial filtering, band
alignment and band normalization.

After the cropping and framing of the raw image, a
reflectance signal is computed from the captured radiance
values for a reliable comparison of the images’ spectra. The
reflectance is calculated as a normalized radiance, taking
a white reference frame that is assumed to represent the
maximal response. Besides the white balancing, a bias cor-
rection to eliminate static noise is carried out by previously
subtracting a dark reference frame from both the image frame

and the white reference frame used for the normalization:

ρ =
target(τ1)− dark ref(τ1)

white ref(τ0)− dark ref(τ0)

τ1
τ0

(1)

In this stage, the target image is split into 25 images with
spatial resolution 409x216. Next, a median filter using a
window size of 3x3 pixels is applied to every band frame.
We have included this optional filtering stage since we have
observed a definite positive effect on spectral separability
and pixel classification indexes.

After the preprocessing, the presence of the filter mosaic
pattern is removed (demosaicing) by a processing that in-
cludes a band extraction step followed by a band alignment
(translation to center) performed by bilinear interpolation.
Finally, it must be mentioned that we have not applied a
spectral correction stage to the processing pipeline as we
have not observed any improvement in the separability of
the spectral signatures.

C. Itineraries and Dataset Organization

One of the main objectives of the creation of this database
was to provide images of the maximum diversity regarding
types of roads, light conditions and weather conditions. Thus,
the database has been structured according to four main
parameters: season of the year, time of day, weather condi-
tions and type of road. The dataset contains videos recorded
while driving along three road types: urban streets and roads,
country and interurban roads, and highways. Driving outings
have been scheduled for the four year seasons of the year
and for three different times of day -dawn, full daylight and
sunset- and under four weather conditions: sunny, cloudy,
rainy/wet, and foggy. Images under heavy rain, ice or snow
conditions have not been yet included.

Each image in the database is linked to four files:
• The binary raw file obtained from the camera (.bin).
• A Matlab Level 5 file containing a three-dimensional

matrix for a 25- band hyperspectral cube obtained from
the raw file (.mat).

• A Portable Networks Graphics (PNG) file containing a
false color RGB image (.png).

• A PNG file containing the annotated image mask or
ground-truth image (.png).

In addition, the dataset includes tarball (.tar) files containing
raw video sequences of approximately 20 seconds from
which the annotated images were extracted.

D. Image Annotation

This first version of the dataset (HSI-Drive v1.0) contains
276 annotated images from recordings taken during spring
and summer. The total count of labeled pixels is 16,825,858.
Version v1.1, incorporating images taken during fall and
winter, will be released by the end of 2021. This dataset is
aimed at the development of detection systems that directly
rely on the separability of the spectral signature of materials
and the features derived from spectral information, thus
the labeling for the image annotation has been performed
according to material surface reflectances as follows:



Fig. 2: False RGB image example (top) and ground-truth
(bottom)

• Class1 (1): Road
• Class2 (2): Road marks
• Class3 (3): Vegetation
• Class4 (4): Painted Metal
• Class5 (5): Sky
• Class6 (6): Concrete/Stone/Brick
• Class7 (7): Pedestrian/Cyclist
• Class8 (8): Water
• Class9 (9): Unpainted metal
• Class10 (10): Glass/Transparent plastic

As a result, in an eventual HSI-supported ADS, the detec-
tion of painted metal surfaces should focus the vision system
on vehicles, road signs, traffic light poles etc. Unpainted
metal detection should focus systems on guardrails, metallic
fences, lighting poles etc. Per-pixel image annotation has
been performed manually using simple polygon labelling
tools. The annotation procedure has been very conservative,
selecting only the areas that clearly belong to each class,
and leaving the edges and large areas of the background
unlabeled, as illustrated in Fig. 2 . This approach is aimed
at maximizing ML algorithms based on spectral features
to the detriment of techniques that rely on spatial features.
However, it is planned that future new versions of the dataset
will also include dense semantic annotation files.

IV. ANALYSIS OF SEPARABILITY
Spectral separability indexes provide information about

how well a classification system could potentially differenti-
ate the hyperspectral signature of the ten different item cat-
egories or classes used for annotation. We have selected the
121 images of the dataset recorded in spring for this analysis.
The distribution of labeled pixels per class contained in this
data subset is shown in Table I. Due to an insufficient amount
of data pertaining to Class8 (water), this class was removed.

Various criteria to evaluate the separability of classes
can be found in the literature. For remote-sensing appli-

TABLE I: Number of labeled pixels in the experimental
image subset

label 1 2 3 4 5
#pixels 3,482,617 174,315 1,330,837 91,002 247,256
label 6 7 8 9 10

#pixels 383,955 30,162 1,327 29,495 32,134

cations, in particular, the Transformed Divergence and the
JeffreysMatusita distance [21] are the most used metrics. We
computed both indexes for the spring subset and verified the
correlation of obtained values. Since the JM index estimates
the probability of correct classification, in the following we
will refer to this metric. Given 2 classes i, j the distance JM
is defined by the following equation:

JMi,j = [2(1− e−Bi,j ]1/2 (2)

where Bij is the Bhattacharyya distance which is defined by

Bi,j =
1

8
(µi − µj)

T Σ−1

2
(µi − µj) +

1

2
ln

|Σ|/2√
|Σi||Σj |

(3)

with µi and µj , and Σi and Σj being the mean vectors and
the covariance matrices of classes i and j respectively, and
Σ = Σi + Σj

Th JM index is bounded between 0, complete overlapping
of classes, and 2, complete separability. More specifically, a
value between 0 and 1 indicates very poor separability; a
value between 1.0 and 1.9 means moderate separability (i.e.,
the two signatures are separable, to some extent) and a value
between 1.9 and 2.0 implies good separability.

Table II shows the JM distance e for every pair of
classes. The last row shows the mean value for each class.
Thus, for example, if we pay attention to the mean values,
classes 5 (Sky) and 1 (Road) are the ones with the best
separability from the rest of classes, showing values close to
2.0. In contrast classes 9 (Unpainted metal) and 4 (Painted
Metal) are the most overlapped between them and with the
rest of classes in average. The rest of the classes present
intermediate values.

V. CLASSIFICATION EXPERIMENTS

Some basic pixelwise classification experiments were car-
ried out on 62 images randomly selected form the experi-
mental spring subset (3,778,485 labeled pixels in total). Only
original spectral signatures were used as inputs and no band

TABLE II: JM distance for each pair of classes

1 2 3 4 5 6 7 9 10
1 1.95 1.96 1.91 2.00 1.45 1.84 1.93 1.71
2 1.95 1.88 1.27 1.93 1.77 1.80 1.64 1.73
3 1.96 1.88 1.58 2.00 1.72 1.35 1.64 1.78
4 1.91 1.27 1.58 1.95 1.36 1.28 0.90 1.23
5 2.00 1.93 2.00 1.95 1.99 2.00 1.99 1.97
6 1.45 1.77 1.72 1.36 1.99 1.36 1.28 1.13
7 1.84 1.80 1.35 1.28 2.00 1.36 1.32 1.43
9 1.93 1.64 1.64 0.90 1.99 1.28 1.32 1.26
10 1.71 1.73 1.78 1.23 1.97 1.13 1.43 1.26

Mean 1.84 1.75 1.74 1.44 1.98 1.51 1.55 1.50 1.53



TABLE III: Architecture and performance evaluation of the
ANN classifiers: model hyperparameters, total number of
adjustable parameters, and test accuracy figures for each
experiment (Acc.0 applies to the ”other” class)

Exp.1 Exp.2 Exp.3 Exp.4
ANN 25-25-300-3 25-25-300-4 25-25-300-5 25-25-300-9

#params 9.4K 9.7K 10K 11.2K
Acc.1 % 95.83 94.34 93.37 91.71
Acc.2 % 93.86 91.49 90.56 87.64
Acc.3 % NA NA NA 94.37
Acc.4 % NA 91.16 88.87 84.13
Acc.5 % NA NA NA 98.81
Acc.6 % NA NA NA 84.14
Acc.7 % NA NA 84.91 82.48
Acc.9 % NA NA NA 72.08
Acc.10 % NA NA NA 73.34
Acc.0 % 94.10 90.28 88.04 NA
OA % 95.15 92.79 91.36 92.16
AA % 94.60 91.82 89.16 85.41

selection neither feature extraction procedures were applied.
Obviously, segmentation results can be eventually improved
by using the more sophisticated machine learning schemes
that incorporate combined spectral-spatial feature extraction
techniques or by essaying deep learning models. However,
such analysis is beyond the scope of this paper and will
be addressed in future publications. The intention of this
preliminary experimentation was to show the discrimination
capacity of baseline ML models such as simple shallow ANN
(Artificial Neural Networks) with low computational cost.
With this aim, in the following subsections we show some
results obtained from four different classification experiments
performed when training shallow ANN classifiers.

A. Experimental setup

After some preliminary analysis, an ANN topology with
two hidden layers (25-L1-L2-m) was selected as the base
model for the classifiers, where L1 and L2 are the number
of neurons in the first and second hidden layers respectively
and m is the number of different classes to be categorized at
each experiment. For each experiment, several networks were
trained by means of the Levenberg-Marquardt backprop-
agation algorithm to maximize the classification’s overall
accuracy (OA) in the validation set. Both OA and the
average accuracy (AA) of pixel classification were adopted
as performance metrics. Training sets were created including
randomly selected 50,000 pixels, when available, from each
class selected for classification at each experiment. Of these,
10,000 pixels were used for the validation set to prevent
overfitting. When insufficient data were available for a cer-
tain class, the corresponding training subset was reduced:
25,000 pixels for Class7, and 12,000 pixels for both class9
and Class10. This means that, out of the 3,778,485 pixels in
the experimental dataset, a maximum of 340,000 were used
for training (10%), while the rest of available data were used
for testing: this is quite a challenging setup.

B. Experiment 1: drivable/no-drivable

In the first experiment the labels were grouped to train
the ANNs with only three classes: “road”, “road marks”

and “other”. This system acts therefore as a sort of drivable
region detector that could be enhanced with lane departure
and trajectory generator capabilities. The training set for this
experiment contained 150,000 out of 3,778,485 pixels, i.e.,
only 4% of available data. The obtained classification figures
for this and the subsequent experiments are summed up in
table III. As expected from the separability measures shown
in Table II, high classification accuracy is achieved for both
Class1 (road) and Class2 (road marks). Figure 4 shows the
pixelwise segmentation of three example images for highway,
road and urban scenes. To enhance image segmentation a
two-stage spatial regularization (SR) algorithm was applied
to the ANN output: first, the pixels classified with a low
confidence (ANN output values below 0.8) were re-labeled
as ”don’t know”, and then the SR process assigned a new
label to those pixels by a majority voting criterion over 5x5
pixel windows. As can be seen, although the obtained results
are generally correct, the vehicles on the road and urban
scenes present many misclassified pixels belonging to the
”road marks” category. This is due to the highly reflective
surfaces of the car bodies painted in white.

C. Experiment 2: drivable/road signals-vehicles
In the second experiment the target categories to be

detected were “road”, “road-marks”, “painted-metal” and
“other”. This system should provide information to perform
not only as a lane tracking system, but also to focus the
system on image areas that potentially contain vehicles, road
signals and other painted metallic surfaces. The training set
for this experiment contained 200,000 pixels, i.e. 5.3% of
available data. In the example highway and road test scenes,
the system correctly detects road signals and the presence
of vehicles, although there are some misclassified pixels in
the background (see Fig.5). However, in the more complex
urban scene practically all the background (except the sky)
has been classified as painted metal. This is not surprising
since, according to the figures in Table II, the separability of
class4 with some of the rest of the classes is quite poor.

D. Experiment 3: drivable/road signals-vehicles/pedestrians
In this experiment, the pixels labeled as “pedes-

trian/cyclist” are incorporated into the training set as a sepa-
rate class. Thus, the resulting ADS could add a focus on any
people at sight to the capacities described in Experiment 2.
The training set for this experiment contained 225,000 pixels
i.e. 6% of available data. The obtained classification figures
are summed up in Table III. Accuracy values are not so good
for Class4 and Class7. These results are consistent, indeed,
with the figures in the separability tables. As can be observed
in the sample images in Fig. 6, highway and road scenes
show some additional false positives for the ”pedestrian”. In
the urban scene, pedestrians are quite efficiently segmented,
but here again the segmentation of the image background is
faulty.

E. Experiment 4: all classes
The last experiment explored the potential of these simple

classifiers to produce a complete segmentation of the images



comprising all categories used in the labeled image dataset
(except for the ”water” class, as explained above). As shown
in Table III, there are some classes with testing accura-
cies of over 90% (”road”,”vegetation”, and ”sky”) while
the classes ”road marks”, ”painted metal”, ”concrete-stone”
and ”pedestrian” show accuracy figures under 90%. Two
classes, ”unpainted metal” and ”glass/transparent plastic”,
have accuracy figures under 80%. However, it must be taken
into account that these are precisely the two classes that
contribute the least amount of data to the training set. In Fig.
7 we see qualitatively quite acceptable image segmentation
for the highway and road scenes. In the urban scenes, road,
road marks and items in the foreground are quite correctly
detected. Nevertheless, the buildings in the background are
misclassified, although the sky and the receding vehicle are
correctly detected.

VI. CONCLUDING REMARKS
The use of HSI sensors in ADS is expected to grow

substantially in the following years. The incorporation of
hyperspectral information will make it possible to improve
the accuracy and robustness of these systems as well as,
eventually, reduce the computational burden of current image
processing pipelines. To meet these objectives it will be
necessary, however, to deepen the research on the HSI
processing applied to ADS. The HSI-Drive dataset has been
created with the desire to contribute to the research in this
field. Unlike other recently reported similar datasets, HSI-
drive has been designed to provide a structured image dataset
of wide diversity in terms of driving scenarios, lighting con-
ditions, and weather conditions. Current annotation of images
has been focused on the spectral reflectance characteristics
of various material surfaces relevant to the development of
ADS. In this work, we show that even a simple perpixel
processing of pure spectral information obtained in the NIR
spectrum can produce quite accurate image segmentation
with baseline neural classifiers. The use of more sophisti-
cated algorithms that incorporate feature extraction stages,
together with spatial/contextual information should enhance
system performance. The HSI-drive dataset will evolve in
the years to come. A larger version of the dataset that will
incorporate new hyperspectral videos and annotated images
corresponding to the winter and fall seasons is currently
under development and is expected to be ready by the end
of the year. We also plan to add dense semantic labeling of
images in the future.
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Fig. 3: False color example images generated from HSI cubes: a highway scene (left), a road scene (centre), and an urban
scene (right)

Fig. 4: Image segmentation examples for experiment 1: ground-truth images (top) and segmented images (bottom)

Fig. 5: Image segmentation examples for experiment 2: ground-truth images (top) and segmented images (bottom)



Fig. 6: Image segmentation examples for experiment 3: ground-truth images (top) and segmented images (bottom)

Fig. 7: Image segmentation examples for experiment 4: ground-truth images (top) and segmented images (bottom)


