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The HSI-Drive 2.1 dataset

1 | Introduction

HSI-Drive dataset was created with the aim to contribute to the research of the use of Hyperspectral
Imaging (HSI) in the development of intelligent vision for Autonomous Driving Systems (ADS). The
seminal idea was that, due to the availability of new small-form factor, portable snapshot HSI cameras,
it was worth investigating whether this technology could help develop more efficient and robust vision
systems for ADS. More efficient in the sense that, by acquiring richer information about the spectral
reflectance properties of the materials in an image, it would be possible to simplify the back-end algorithms
responsible for interpreting the world around the vehicle (scene understanding) and thus optimize processor
design and reduce computational burden. More robust because the use of spectral information, together
with the augmentation of the sensed light spectral bandwidth (VIS/NIR/SWIR), could help to overcome
some limitations of RGB imaging vision systems such as metamerism and performance loss under adverse
lighting and weather conditions.

However, before using this dataset in the research for new HSI-based computer vision systems, it is of the
utmost importance to correctly understand the nature of these data. Firstly, it is necessary to understand
the fundamentals of the technology that makes it possible to produce relatively cheap HSI sensors that
allow for the commercialization of snapshot cameras that can record images at video rates, and thus
suitable for applications such as ADS. Secondly, it must be taken into consideration that the uncertainty
in environmental conditions inherent to obtaining HSI video in real driving scenarios (light, vibrations,
relative speed of objects in a scene, etc.), especially if the approach is a simple setup that reproduces
a realistic implementation situation, has a profound impact on the quality of the data obtained. The
combination of these factors makes the image data provided in this dataset far from what would be
obtained with a high-end spectroscopic camera under laboratory conditions, and therefore should not be
interpreted or used as such. The objective of this document is to provide relevant, while not exhaustive,
information on the characteristics of the HSI-Drive data and thus help researchers who decide to use this
dataset to interpret them correctly and to apply them in accordance with their nature.

The v2.1 version of the HSI-Drive dataset does not provide more annotated images, but a new, more careful
annotation of the images already in version v2.0. The aim of this new labeling effort has been twofold.
Firstly, to increase the amount of labeled pixels for training, especially in the most underrepresented
categories. Secondly, to provide higher quality test images for the evaluation of segmentation models.
However, the primary approach to the image labeling of the dataset is not changed, i.e. keeping unlabeled
the pixels that a human labeler cannot clearly decide which category they belong to. This usually includes
many background pixels and all the edges that delimit different items or surfaces in a scene.

Table 1.1: Frequency of each class in the HSI Drive v2.0 dataset.

Total Road R.Marks a Veg.b Pain.Met. c Sky Concrete Ped. d Water Unpain.Met. e Glass
Pixels 43,947,503 26,690,619 1,325,343 9,339,224 948,852 2,511,496 2,315,153 209,531 12,330 348,341 246,614

% 100 60.73 3.02 21.25 2.16 5.71 5.27 0.48 0.03 0.79 0.56
aRoad Marks. b Vegetation. c Painted Metal. d Pedestrian. e Unpainted Metal.

Table 1.2: Frequency of each class in the HSI Drive v2.1 dataset.

Total Road R.Marks a Veg.b Pain.Met. c Sky Concrete Ped. d Water Unpain.Met. e Glass
Pixels 45,055,512 26,753,811 1,364,908 9,799,475 1,113,573 2,549,527 2,485,658 231,019 10,592 467,688 279,261

% 100 59.38 3.03 21.75 2.47 5.66 5.52 0.51 0.02 1.04 0.62
aRoad Marks. b Vegetation. c Painted Metal. d Pedestrian. e Unpainted Metal.
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2 | HSI sensor technology

The images contained in the HSI-Drive dataset were recorded with a Photonfocus MV1-D2048x1088-
HS02-96-G2 camera that features an Imec 25-band HSI NIR sensor. The spectral bands are obtained by a
mosaic of Fabry-Perot (FP) filters deposited on a CMOSIS CMV2000 image wafer sensor that produces
2D images with 5x5 pixel windows. According to Imec’s technical documentation, the active range of
the sensor is 600-975 nm, i.e. it is a red-NIR sensor. However, it is important to note that to limit the
sensor response to this wavelength band, rejection filters have to be mounted in front of it. If not, the
sensor response without rejection filters is that shown in Fig. 2.1. Notice that there is a spectral leakage
below the 600nm limit and that many filters present a second-order response peak. In the case of the
Photonfocus MV1 camera, it does not feature an internal high-pass 600nm filter integrated with the sensor,
which implies using band-pass rejection filters attached to the optics in case low-wavelength leaking and
mixed first or second order responses want to be filtered out 1. However, as shown in Table 2.1, this is not
possible to achieve for all the 25 FP filters in the mosaic.

(a) Ideal Fabry-Perot response (b) Ideal Fabry-Perot response (normalized by area)

Figure 2.1

Table 2.1 shows the contribution of the peak signals to the total band response when no rejection filters
are used. It is measured as the area under the fitted peak in [center ± 1.5 x FWHM] relative to the total
response of the sensor.

Fig. 2.2 shows the frequency responses of the two rejection filters provided with the Photonfocus camera.
We named filter A the rejection filter that provides a [600nm, 875nm] pass band, and filter B the filter
that provides a [675nm, 975nm] pass band.

1In latest versions of the Photonfocus cameras a bandpass filter is integrated inside of the camera body, eliminating the
need to mount rejection filters on the lens
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First order Second order
Filter Wavelength (nm) Contribution FWHM (nm) Quant. Eff. (%) Wavelength (nm) Contribution FWHM (nm) Quant. Eff. (%)

0 888.479 0.289 12.91 6.3 601.711 0.094 8.08 3.3
1 897.659 0.270 12.54 6.1 610.953 0.072 6.40 3.2
2 879.132 0.334 12.54 8.6 595.124 0.124 6.40 6.2
3 869.114 0.279 10.87 8 587.481 0.127 11.80 3.3
4 956.111 0.230 16.63 3.9 675.021 0.124 3.06 11.5
5 795.962 0.284 6.77 13.4 539.053 0.177 25.00 2.3
6 807.631 0.259 6.77 13.1 552.310 0.145 19.42 2.6
7 783.757 0.412 9.19 15.9 537.869 0.137 23.51 2.1
8 770.576 0.320 7.15 13.9 536.812 0.123 21.84 1.7
9 679.136 0.239 4.36 11.8 770.561 0.059 9.19 1.4
10 744.483 0.331 6.03 15.6 535.563 0.101 23.88 1.2
11 757.923 0.346 6.78 16.1 536.038 0.108 23.51 1.4
12 731.883 0.246 4.36 14.7 783.642 0.064 12.91 1.3
13 718.298 0.346 5.10 17.9 770.861 0.045 10.50 1.1
14 692.903 0.181 3.99 9 744.417 0.044 7.71 1.1
15 928.810 0.368 21.47 4.5 641.358 0.075 4.36 4.6
16 936.246 0.357 19.05 5.6 649.777 0.126 3.62 10.4
17 920.599 0.292 14.96 5.2 632.874 0.065 4.73 3.7
18 912.169 0.243 14.21 4.4 624.181 0.095 4.73 5.1
19 950.391 0.289 16.63 4.4 666.719 0.076 3.06 6.3
20 848.549 0.192 8.08 7.3 572.240 0.177 11.24 4.8
21 858.948 0.222 8.82 7.9 577.147 0.175 13.29 4.1
22 564.362 0.246 25.00 3.2 838.080 0.238 8.08 9.7
23 826.768 0.329 10.50 10.8 557.051 0.179 16.26 3.8
24 944.485 0.347 22.77 4 657.995 0.068 3.24 5.5

Table 2.1: Filter response contribution for each of the 25 FP filters in the mosaic

(a) Filter A response (b) Filter B response

Figure 2.2: Frequency responses of the rejection filters

As an example, in Fig. 2.3 we show the graphical representation of the first FP filter when, top, Filter A
is used, center, no filter is used, and bottom, Filter B is used.
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Figure 2.3: Normalized response of the first Fabry-Perrot filter (band 0): peaks at 880.5 nm and 601.7 nm

As can be observed, rejection filters improve the separability of the spectral information, avoiding spectral
leakage under the 600nm limit and minimizing second-order peaks. However, even with the use of rejection
filters, there is still an unavoidable spectral mixing in the sensor response. This spectral mixing, which
is present to a greater or lesser extent in every FP filter, can be reduced in the postprocessing of the
acquired raw image by means of a linear transformation matrix (spectral correction), as far as rejection
filters are used in the image acquisition.
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3 | Recording setup

The recordings for the HSI-Drive dataset were performed with no rejection filters attached to the optics of
the camera. This decision, which may be controversial, was motivated by two main factors.

Figure 3.1: The Photonfocus snapshot HSI NIR camera mounted on a car

Firstly, because rejection filters notably reduce the amount of light reaching the sensor and also produce
severe vignetting. This fact is of great importance for this application due to the demanding requirements
in terms of image integration-time and depth of field. On the one hand, image integration time was initially
limited to 10,000us to avoid motion blur. This limit had to be later modified, at the risk of producing
some blurring for fastest moving elements in the scenes, to 20,000us for recordings under low-illumination
conditions. On the other hand, the calculated optimum focal aperture to get the desired depth of field
was f=8.0. Again, this constraint had to be later relaxed to f=4.0 for low-illumination conditions. The
combination of these two factors define de Exposure Value (EV) of each frame shot. The use of rejection
filters would have required the use of even larger apertures, unacceptably reducing the depth of field and
degrading the functionality of the FP filters.

Secondly, because the initial exploring experiments performed with Machine Learning (ML) baseline
spectral classifiers (ANN and SVNs) on images recorded with and without rejection filters did not show
neither notable nor a consistent improvement in classification performance for the former setup. All in all,
the final decission was to priotitize the practical application approach over the quality of data from a
spectral analysis perspective and avoid the use of rejection filters 2.

Finally, it has to be mentioned that in some recording sessions the Analog Gain parameter of the
Photonfocus camera was set to x2.0 to further amplify the sensor response (at the cost of augmenting the
noise). The combination of these three parameters, integration time (t), focal aperture (f) and analog
gain (AG), resulted in eight different recording setups or camera configurations, which has implications in
the postprocessing of the raw images necessary to get the 3D spectral cubes. Table 3.1 shows the details
of the eight applied camera setups and the calculated relative equivalent exposure (EV) and the absolute
equivalent exposure (AEV) numbers for each configuration. As can be seen, there are five different AEV

2While with the NIR sensor the out of band leakage of the filters is limited and thus the spectral signal is not too much
contaminated, the choice to not use the rejection filters makes an accurate irradiance or reflectance spectrum can no longer
be computed from the data. While this is not a requirement for the classification, in case accurate spectral measurements
are required the bandpass filters should not be removed
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values from 8.64 to 12.64, which implies a iluminance variability factor of x16 between configurations 1
and 6.

Table 3.1: Camera setups

setup time us f EV AG AEV
1 10000 8 12.64 1 12.64
2 10000 8 12.64 2 11.64
3 10000 4 10.64 1 10.64
4 10000 4 10.64 2 09.64
5 20000 8 11.64 1 11.64
6 20000 8 11.64 2 10.64
7 20000 4 09.64 1 09.64
8 20000 4 09.64 2 08.64
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4 | Cube processing pipeline

As explained in Section 2, the sensor produces 2D images with a spectral mosaic pattern. If 3D spectral
cubes are to be generated from raw images, some image processing steps must be performed. Explaining
the very details of the cube generation processing pipeline is out of the scope of this document, and anyway,
there is no standardized cube processing pipeline; it depends on the goals, the processing constraints,
and the application domain. With this in mind, the HSI-Drive dataset includes the original binary RAW
images (12 bit resolution) together with the generated 3D spectral cubes.

Following the same experimental philosophy that guided the recording setup, i.e. prioritizing the practical
application approach, the cube processing pipeline applied to generate the hyperspectral cubes in the
HSI-Drive 2.1 was kept simple. Firstly, because the used recording setup (outdoor recording, different
camera setups, etc.) strongly conditions the applicable postprocessing approach. Secondly, because the
target application (ADS) requires real-time processing of the acquired images; trying a more accurate
yet more complex cube generation pipeline would become the principal processing bottleneck that would
impede it.

The applied spectral cube generation process is a reflectance processing pipeline that comprehends the
following steps (see Appendix A):

1. Image cropping and framing: It is necessary since the mosaic filter does not cover the whole sensor.

2. Bias and reflectance correction: A dark field image and a white field image are used to compensate
for sensor noise and perform white balancing. Ideally, this process should transform the irradiance
information into a more or less accurate spectral reflectance information. However, this cannot be
achieved with the recording conditions used to record the images in this dataset. The v2.1 version
incorporates a new processing function (optional) to estimate the scene relative illumination with
respect to the reference white field images and perform a scaling of the white balancing. Further
explanations on this issue are given below.

3. Partial demosaicing: It is the process of selecting the pixels that correspond to the same spectral
band at each mosaic filter. This implies reducing the image resolution to 1/5.

4. Spatial filtering (optional): For coherence with the previous versions of the dataset, we provide
cubes generated with and without 3x3 median spatial filtering (only for the cubes with no white
balancing).

5. Translation to center (band alignment): A bilinear interpolation algorithm is applied to compensate
for the spatial offset of the pixels surrounding the central pixel in the mosaic filter.

6. Data normalization (optional): Since data normalization techniques (per band normalization, pixel
normalization etc.) have different objectives depending on the algorithms to be used to subsequently
process the hyperspectral images, and since it is the final step of the processing pipeline, unlike in
the v1.x versions of the dataset, we do not provide normalized cubes in v2.x versions. This process,
if necessary, is left to the dataset users.

Notice that no spectral correction stage is applied. As detailed in Section 3, no rejection filter was used
for recording, thus no spectral correction matrix is available to compensate for sensor spectral mixing.

Reflectance Correction: Reflectance correction is aimed at canceling the irradiance spectrum of the
illuminant. In a laboratory, this can be performed by using a calibrated reference white tile to divide
the data in the image to be processed by the data in a reference white image acquired under the same
illumination conditions and with the same camera configuration. In outdoor scenes this is not possible, but
it may be sufficient that the reference tile is visible in part of one of the scenes assuming that illumination
is stable. If not, as is the case for the recording of the HSI-Drive dataset scenes, an accurate reflectance
correction is not possible at all. However, when generating data for the HSI-Drive dataset, we chose to
use a common white reference image obtained for each of the four different f-number/AG combinations
to perform a ”pseudo reflectance correction”. These white reference images were generated by averaging
various shots over a spectrally calibrated Spectralon white reflectance tile under expected natural maximum
illumination conditions, i.e at midday on a sunny day (Fig. 4.1. Since no point spectrometer and no other
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light measuring devices were present in the recording setup to compensate for illumination variations,
obviously the applied correction does not normalize the spectral signatures of the different images in the
dataset (a posteriori image normalization techniques can be applied to deal with this to some extent).
However, this processing still provides some benefits. Firstly, it reduces sensor non-uniformity issues and
image vignetting, and secondly, it cancels to some extent the irradiance spectrum of natural light.

Figure 4.1: Spectra of the maximum values of the averaged reference white tile images for the four different
camera configurations used in the dataset. Images were taken by exposing the calibrated tile to direct
sunlight in a clear day with the sun at its zenith

As an improvement to data quality, in the v2.1 version of the dataset we incorporate an additional
processing function that estimates the relative level of illumination of the recorded scene by searching for
the pixels with the highest albedo at each image. These pixels usually correspond to high-reflectance white
surfaces such as road marks, white vehicle bodies, etc. although in some cases the algorithm selects pixels
corresponding to the sky. By comparing the irradiance of these pixels with the reference white images, a
scaling factor is calculated to correct the reference white images stored in memory. Ideally, if the procedure
was perfect, all images in the dataset would be scaled in the [0,1] range. However, the search for reference
pixels for scaling involves rejecting pixels from artificial light sources such as illuminated signs, traffic
lights, and front and rear lights of vehicles. The programmed algorithm automatically segregates these
”suspicious” pixels on the foundation of their spectral signatures, so no human intervention is required and
thus, this function can be embedded in the image processing pipeline of the image segmentation processor
(see Fig. 4.2). Artificial light pixels are thus treated as outliers and clipped to 1 at the end of the cube
preprocessing sequence.
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(a) Sensed irradiance values (int12)

(b) False RGB image of the 25-band HSI cube
and coordinates of the pixel with maximum
albedo

Figure 4.2: Example of the automatic identification of a maximum albedo pixel for the white balance
scaling. This image corresponds to a cloudy morning fall recording with low lightning. Although the
maximum irradiance is generated by the rear and front lights of the cars (a), the algorithm successfully
rejects these pixels and selects a pixel corresponding to the road mark as the highest refelctance pixel in
the image for scaling (b)

Performed testing experiments on the HSI-Drive 2.1 dataset demonstrates the superiority of applying this
scaled reflectance correction processing function over the use of non-scaled cubes both with and without
applying pixel normalization procedures. Table 4.1 summarizes the results obtained in the HSI-Drive 2.1
dataset for a 5-class experiment with our latest and best performing model, which is a U-Net with spectral
attention modules. It can be seen that the best global results are obtained for the scaled reflectance
correction version with no pixel normalization (PN). Notice that when no scaling strategy was applied to
the reflectance correction stage, as reported in previous publication, applying PN produced better results
compared to the non normalized data. Nevertheless, in the v2.1 version of the dataset both scaled and
non-scaled cubes are provided for experimentation.

Table 4.1: Segmentation results for the 5 class experiment. The figures correspond to mean IoU values
over a 5-fold cross-validation experimental setup

version road road marks vegetation sky ”others” global weighted
No scaling + PN 97.64 85.33 94.55 92.89 81.79 94.71 87.75
Scaling + PN 97.83 87.27 94.60 94.14 82.50 95.04 89.16
Scaling 98.04 89.97 94.46 92.05 83.26 95.17 90.03

Figure 4.3: Example of a segmented image for the 5-class experiment. Cube processing: scaled reflectance
correction and no pixel normalization.
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A | Appendix A: Processing pipeline

Figure A.1: Pipeline flow for the HSI-Drive v2.1 dataset cube processing
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